If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+10a-39=0
a = 1; b = 10; c = -39;
Δ = b2-4ac
Δ = 102-4·1·(-39)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-16}{2*1}=\frac{-26}{2} =-13 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+16}{2*1}=\frac{6}{2} =3 $
| 58-(-14x)=96 | | x+.01x=40000 | | 4x-2×4=28 | | M+1=m+ | | f(-2)=10(2^-2) | | 18.6=3.1k | | 3p+3=3p+ | | 2x+4=2x- | | 13=2.4+d | | 3=g,-4-5 | | 4x-25=-3x+24 | | 3x+16=7x+16 | | 2=m,2-7 | | 3x13=7x+16 | | 4.6=-3.9v | | 13=3.6+a | | -27r=-27 | | x²+3=-2x+9 | | 2(7x-5)=50 | | –9x–16=-34 | | 142=13x | | 3x2+1/2x2=7x | | 5x-2=10/ | | 20x+9=x | | 10x=14=3x | | z+3z+25=125z= | | 58=8x+5 | | -2.7y=-10.8 | | 66+n-(17)=76 | | 6x2x=40 | | n/5+9=22/ | | 12=3w+5 |